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Diffusive inflationary cosmology
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Abstract. In theparadigm of inflation, at sometime the early universe behaves
roughly as the de Sitter solution of the relativistically covariant(i.e. hyperbolic)
vacuumEinsteinfield equationswith a large positivecosmologicalconstant.Here,
we considerwhat happensif a metric g(t) on a compact3-manifoldevolvesac-
cording to R. Hamilton ‘s parabolic Ricci flow equationg’(t) = — 2k Ric&(t)) +

+ Dg(t), with an addedpositivesourcetermDg(t) which is analogousto thecosmo-
logical term in Einstein’sequation.In spiteof thefact that this Ricci-flowequation
is parabolic, and hencenonrelativistic, we show that if the diffusion constantk
in the Ricci-flow equation is related to the cosmological constant A by
A = 3/16 (c/k)

2 and D = 1/2 c2/k, then the Ricci flow solution agreeswith the
de Sittersolution, modulo exponentiallydecayingterms, in the casewherespheri-
cal symmetlyis assumed.In the casewhere the initial metric on the spatial 3-
manifold has positive (but not necessarilynearly constant)Ricci curvature, we
show that underthe Ricci flow, the universenot only expands,but becomesas
round and de Sitter-like as desired, by choosingk appropriately. In contrast,
similar “no hair” theoremsin the relativistic case,not only assumea homogeneous
spatialmetric,butalso haveweakerconclusions.Moreover,in the relativistic setting,
mostattemptsto reduce local inhomogeneities,in order to conform with observa-
tions,are rather contrived,as their authorsadmit.

1. INTRODUCTION

In the past decade,a number of differential geometersled by R. Hamilton

have beenactive in the study of geometricalheatequations.In particular,there

havebeenstudies (e.g., see [7, 8, 91) of the Ricci flow equationfor a time-depen-

dent metricg(t) on a compactn-manifoldM:
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(I) g’(t) = — 2k Ric(g(tri + Dgt.

where Ric(g(t)) is the Ricci tensor(Ric.1 = R. = Rt k~

1of the metric g( t I, and

k is a positive constant with the dimensions of the heat diffLlsivit\ constant

namely length2 time and I) is a constant with dimension I/time. Hamilton

(see [71or [81 routinely setsk = 1. and most often takes 1) = 0, or lets I) he

the time-dependentfunction 2k/n R(t), where

[J ~(g(t))~

L J ,!

is the averagescalarcurvature,so that the Ricci flow is normalized,in the sense

that the volume of (M. g(t)) is constant.However, for the time being, let k and

D arbitrary, and for simplicity, time-independent.Equation ( 1) is--~~nonlinear.

weakly-parabolicsystem,in the sensethat the characteristicmatrix (or symbol)

formed from the second-ordercoordinatederivativesof g.
1 ~n 2k Ric(g) has

nonnegative(but not all positive) eigenvaluesat eachnonzeroconvector.Hence-

forth, we assumethat 114 has dimension 3. In the 3 + 1-formulation of general

relativity, the Einstein evolution equations form a weakly hyperbolic system.

Indeed, the metric (
4)g = — c2dt2 + g(t) satisfies the vacuum Einstein field

equations t4~RZ,—- 1/2 t4~R(4)g + A (4)g = 0 with cosmologicalconstant

A, if and only if the following weakly hyperbolic systemof evolution equations

and constraintsare satisfied(e.g., see [3, 5, 14]) (where (g’ x ~ gh1g’
1g15

and Tr(g’) ~g”g’.1)

(2) C

2g”(t) = c~2 ~‘ (t) xg’(t) ~- 21 Tr(g’(t)) g’(t)]

-~ 2Ric~g(t))+ 2 Ag(t)

(3) 2 [Tr(g’(t))2 -- g(t) ~2 + R(g(t)) = 2A

(4) Div[g’(t) — Tr(,g’(t))g(t)] = 0.

If theconstraints (3) and (4) hold initially then they are preservedunderthe

evolution (2) due to the invariance of theequation‘4~R~ 1/2 t4~R(4)g~,+

+ A (4)g ~, = 0 underspace-timediffeomorphisms.The weaknessof the parabohi-

city of (1) and the hyperbolicity of (2) is due to the invarianceof thesesystems

under the diffeomorphism group of the 3-dimensional Cauchy hypersurface

M. In the case of (I). this weaknesscan be easily eliminated the following

eDeTurck trick (a term dubbed by Hamilton who attributes the idea to 1).
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DeTurck [4]). Let {F~(t)} be the Levi-Civita connection of g(t) and define a

global vector field V(t) on M via V(t)k = k g (t)’
1 [r~(t)— F~(0)).Let ~ be

the flow on M inducedby V(t)(i.e. d/dt4~~(p)=V(t) for allp EM). Let,~’(t)=

= ~p7g(t).Then

d
(5) ~‘(t) = — [~(t)I = ~V(t) ~p~’g(t)+ ~p7g’(t)

= ~V(t)~)~t~t) —~a~(2kRic~g(t))+Dg(t))

= 2’~(t)~(t) — 2k Ric(~o~’g(t))+ Dço~g(t)

= ~‘V(ty?~(t) — 2k Ric(,g(t)) + D~(t)

This equationfor ~(t) is strictly parabolic,asonecancheckthat theLie deriva-

tive term cancelssome of the secondderivative termsin — 2k Ric(,g~(t)),so that

the resulting top-order term of the right side is kg” a2~/ax1ax1in local coordi-

nates. One can then use the standardtheory of quasi-linearparabolic systems

to solve (5) for ~(t) for short time 0 ~ t < e, and theng(t) = (p
1/ I )*~(t)is a

short time solution of (I) with the sameinitial data. A similar trick wasinvented

earlier to break the diffeomorphisminvariancein thecaseof Einstein’sequa-

tions (e.g.. see [2, 3] and [14]), through the useof harmoniccoordinatesor har-

monic conditions relative to a backgroundmetric, but this trick is carried out

in a 4-dimensionalcontext. It would be interestingto fmd a trick which works

entirely within the 3 + 1 context.

Our major goal is to show that under certain fairly generalcircumstancesof

cosmological interest in the early inflationary universe,solutions of the Ricci

flow equation (1), with an initial metric of positive Ricci curvature,come quite

close to solving not only the Einsteinevolution equation (2), but also the con-

straints (3) and (4), provided the diffusion constantk, the dilation constantD

and the cosmological constant A are related by A = 3/16 (c/k)
2 (or

k = 1/4 c V’~7~)and D = 1/2 c2/k = 2c\/X7~.With regardto producinground-

ness,best results are obtainedif kD = 2(k/c)2 = 3/8 A— is chosen to be

close to, but strictly less than, the maximal value ‘r for which a solution of

h’(r) = — 2 Ric(h(r)). h(0) = g(0) exists. See Theorem 2 in Section 3 for a

precise statement. Roughly, the closer 3/8 A— is to Tm the more closely

(M, g(t)) becomesa sphere (andthe more closely — c2 dt2 + g(t) approximates

the de Sitter solution) for large t, regardlessof how inhomogeneousg(O) is.

It should be mentionedthat the assumption that the initial metric g(0) has
positive Ricci curvature,is weakerthanrequiringthatg(0)havepositivesectional

curvature. Indeed, at a point, relative to an orthonormalframe for which Ric is

diagonal, we have R
11 = R1212 + R1313 and cyclic permutationsof this. Thus,
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R
1712 = 1/2 (R11 + R22 — R33 ), and negativesectionalcurvaturesoccurif R31 >

> R II + R22 - There are someresults (e.g. [10, 15]) in generalrelativity with a

positive cosmological constant, concerning the asymptotic approachof homo-

geneouscosmologicalmodels, at least locally, to a de Sitter solution. However.

even under the severe homogeneity assumption, the initial anisotropies will

eventually reappearwithin the horizon, after (perhapsunobservabhylong after)

the cosmological constant becomes small. In other words, unlike a suitable

diffusive inflation, initial anisotropy is still present at large time on a global

scalein thesemodels.

In Section 2. we introduce some notation, recall some of Hamilton’s results.

and carry out some computationsin preparationfor the statementsand proof’s

of Theorems2 and 3 in Section 3. Some philosophical remarksand directions

for further investigationare given in Section 4. In what follows, we work in the

C~(smooth) category. The author gratefully acknowledgesRichard Hamilton

for his monumentalgroundwork and for interestingconversationsandseminars

which madethis article possible.

2. PRELIMINARY RESULTS

PROPOSITION 1 (Hamilton [71).Let be a metric on a compact3-manifold 114.

Then there existsa unique famils’ 11(T) of r-dependcntmetricson 111, defined

for somemaximal interval, 0 ~ r < ~ and smooth on M x [0. r~ ). such

that h(0) = g0 and

(6) h’(r) = — 2 Ric(h(r)).

Moreover, if Ric~g0)> 0 (i.e. Ric~g0)is positive definite at all points of M).
then Ric(h(r)) > 0 for all 0 ~ r < Tm~and rm < oc, and max R(h(r))~ :x E

EM~-+ooasr—*r.

PROPOSITION 2. Let g0, ii(r) and r beas in Prop. 1. Let D be a constantwith
kD ~ r. Then thesolution of tile problem

(7) g’(t) = — 2k Ric(g(t))+ D g(t). g(0) = g0

existsfor all time t ~ 0 andis givenby

(8) g(t) = eDt h[k[l —e Dt]D I ~)t h(r(tri.

Proof Since the Ricci tensor is dilation-invariant, we have Ric(h(r(t))) =

= Ric(g(t)) and

g’(t) = eDtil~[k[l -- e Dt]D II ke Dt + De~)th[kD [1 c Dt11
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= — 2k Ric(h(’r(t))) + Dg(t) = — 2k Ric(g(t)) + Dg(t).

For motivation, we first considerthe casewhere (M, g(0)) is 3-sphereof con-

stant curvature. Let do
2 be the metric for a 3-sphereS3 of radius 1, and let

h(r) = r(r)2do2. Then the equation h’(r) = — 2 Ric(h(T)) becomes
[r(r)2]’ do2 = —4 do2. Thus, h(r) = [r

0
2 — 4T] do2. Then Tm = 1/4 r

0
2.

By Prop. 2, the correspondingsolution of (7) is

(9) g(t)=e~)th[k[l _etlt1D_~]=e~)t[ro2 —4kD”’[l _e_Dt]]do2

= [eDtr
0

2 _4kD~[eDt — 1]] do2 = [4kD’1 +eDt(r
0

2_4kDI)]do2.

For an initial perfect 3-sphereof radius p
0, the two solutions — c

2 dt2 +

+ g~(t)of Einstein’s vacuumequations(2), (3) and (4), with g = andcosmo-

logical constantA, are given by

~ (t) = p
0

2 (3/A)p~2+ [1 — (3 /A)p~2]cosh(2~ Ct)

±(1 — (3/A)p~2)~2sinh(2~ct))do2

For g(t) to exist we need1 — (3/A)p~2 ~ 0 or p
0

2 ~‘ 3/A. The initial velocity

is g(O) = ±2cp
0(l/3 Ap~— 1)~do

2. For large t, we obtain,modulo exponen-

tially decayingterms,

g~(t)~ Ge(t)_~ (3/A)+ p
0

2 ~ —4 (3/A)p~2]

± [1 — (3/A)p~ 2]I/2~exp(2~ ct))dC2.

From this, we see that in order for G(t) to matchg(t) in (9), it is necessary

that 4kD = ~- (3/A) andD = 2c \/~7~Thus,k = fr (3/A)D = f (3/A)

c~’K/~~ ~,-cV’~7Xorl6k2 =3c2/A. Hence,

(10) A = -pg- (c/k)2 = 4 D/k, D = -~ c2/k = 2cV’X7~,

k=4c2/D~~c\/~TA, c2=2kD.

With 4kD = ~,- (3/A), it is easy to verify that for each r
0 with r~ —

— 4kD I > 0 (i.e., r~> -4 (3/A))~thereis a unique p0 >0, suchthat

(11) r0
2 — 4klF I = -~- [1 — l/2(3/A)p~2~±-~- [1 —(3/A)p~2]~2}
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(i.e.. g(t) Gç(t))~namely, choose P
0

2 = r
0

2 + *(3/A)/( ~- ‘V~ 1), and

use thenegativeinitial velocity — 2cp
0 (1/3 Ap0

2
11’i~do

2 if r
0 <3/4 (3/A).

and the positive initial velocity 2cp0 (1/3 Ap0
2 —. 1)1/2 do2 if r

0 > 3/4 (3/A)

[of course.g~(0)= 0 for r0 = 3/4 (3/Afl. Conversely,given p0 with p~~ A/3.

and a sign ±for the initial velocity g’(O) if p0
2 > A/3, we’ obtaing(t)~G(t)if

(12) To2 = [r
0(±)1

2 4 P
0~([l + 4 (3/A)p0 2~ ±[1 - (3/A)p0 2]12)

In summary.we haveshownthe following.

THEOREM 1. For any k > 0. let g(t,’ k, r0) = r(t: k, r0)
2 do2 be thesolution of

g’~ = — 2k Ric~(t))+ ~ c2/kg(t). g(0) = r
0

2 da

and let g~(t.’k, p
0. ±)= p(t: k, p0. ±)2do

2 be tile solution of theempty-space
Einstein equations (2), (3) and (4). with cosmologicalconstant,A = 3/ lb (c/k)2,

and initial square radius P
0

2 > 3/A and initial velocity g(0) =

= ± 2cp
0 (1/3 Ap0

2 — 1)1/2 do2. Let r
0 (±)> 0 begivenby (12). Then,

p(t: k, p0. ±)2 r(t.’ k. r0(±))
2 <C’exp( -~2~ct).

for someconstantC independentof’ t.

REMARK. More precisely,it is straightforwardto show that

(13) p(t.’ k, p
0. ~)2 - r~t; k, r0(±))

2 = [r
0(~)]

2 exp(- 2~ ct).

Note that both termson the left handside of (13) grow exponentiallywith t.

and yet their difference decaysexponentially. Also, note that when Ar
0

2 ~ I

(or Ap
0

2 ~‘ 1 with positive initial velocity), then r
0(+) p0 by (12). and

[r0 (_)}2 1/2 (3/A) ~ [r0 (+)]2. Thus, when Ar0
2 ~ 1. (13) indicatesa close

relative agreementfor all t ~‘ 0. While agreement for large t is always good,

the disparity for sinai! t is unboundedas r
0

2 approachesthe lower bound
1/2 (3/A), sincep

0
2 = r

0
2 + 1/8 (3/A)/(2/3 Ar

0
2 — 1).

In Theorems 2 and 3 of Section 3. we do not assumeperfectsphericalsym-

inetry, but rather that g(0) is a metric with positive-definite Ricci tensor. We

will need the ensuing results to handle this. The following equationis similar

to (6), but it producesmetrics h(~)which are norlilalized in thesensethat the

volume of (M, h(?)) is constant:
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(14) ~‘(T~) = — 2(Ric(h(fl) - ~ ~(h~(~))~h(r~))

where

R(h(T)) = [fd~(~n]~ fR(~(fl) dv(~(r~))

is the averagescalarcurvature of h(fl. Note that volume is preserved,since

d( (
2 — di(h(~)).= Tr[h’(~)]I(~(i~))

= —2 f (TT[Ric(~))] — ~ R(h~))Tr ~(fl)~

= —2 f (R~~ - ~ ~(fl)3) v~(fl)=0.

It is not hard to get solutionsh(r) of (14) from solutionsh(r) of (6). Indeed,

we have

PROPOSITION3.Let h(r) andTm be as in’Prop. 1. With

~(r) exp(~j R(h(u))do)

and

11’

~(r)~ i,lí(o)do,

Jo

let

(15) h(r~)=iJ.i(T)h(r).

Then h(T) solves(14)for 0 ~

Proof
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= [~(r) h’(T) + ~‘( r) h(r)1 r’(T~)

= [~(r)h’(r) + ~‘(T) h(r)1 ~(T)

= 11(r) + ~‘( r)~(r~ h(~)= — 2 Ric(h(r))

+ R(h(r)) Iz(r) = — 2 Ric (/~))+ R(h(~))h(fl.

For an integer n ~ 0, there are many different, yet topologically equivalent,

C~norms on the linear spaceof tensorsof a given type on M. For definiteness,

let G be any fixed C~ Riemannian metric on M, and let V be the Levi-Civita

connection of G. For any tensorT and integer n > 0, we define the C° norm

~ by

(16) ~ ~max [~G(V’T, ViflI/2~

where is the inner product induced by G~on tensorsat a point x E M. and
VI

1T is the i-fold application of V to T. For a different choice of metric, we

obtain an equivalentC” norm. Recall that norms and on a vector space

V are equivalent if. for some constant C’, C” v M’ ( C v for all
v E V. For definiteness,one may chooseG = h(0), in all that follows. The fol-

lowing deepresultis a direct consequenceof resultsin Section 17 of [71.

PROPOSITION 4 (Hamilton). Let h(r) and h(r~)be as in Prop. 3. If Ric(h(0)) > 0.

then ~(Tm = oc (i.e., hr) exists for all ~ ~ 0), and h(?) convergesto a metric,

say ii,,. , of constant curvature (e.g., M must be diffeomorphic to a sphereif

M is simply-connected). Tile convergenceis in C” f’or each n ~ 0. Indeed,

h(i) -- Iç~ ~A~e_bnT, for some positive constants A and b,,, where

is definedby (16). In particular, since )~ hasconstantcurvature, wehave

Ric()I~) — 1/3 R(lç )h~ = 0. and thus for somepositiveconstantsA and b,

dependingon n.

(17) Ric(h(~))-. R(~)) ~(?) J <Ac’ ~r

More generally, if P(h) is a tensorwhich is formed,by meansof tensorproduct

and/or contraction, from themetric ii and the curvature tensor and/or its cova-

riant derivatives,then

(18) lP(~)) -P(h~)~,,<Ae5~,
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for someconstantsA and 6, dependingon P. n, and h(O).

PROPOSITION 5. If the metric g(’t) satisfies g’(t) = — 2k Ric(g(t)) + Dg(t), then

d
(19) — [Ric(g)] = k[I~Ric(g)—6 Ric(g)x Ric(g)

+ 3R(,g) Ric(g)+ (2 II Ric(g) I2 — R(g)2 )g].

Proof By Prop. 2, g(t) = e1~h[k[1 — e_Dt]D” 1~= e’3rh(r(t)). Since the
Ricci tensor is invariantundera spatially constantconformalchangeof the me-

tric, we have Ric~g(t))= Ric(h(’r)). According to a full derivation in [7], we
have(where~, x and are computedwith respectto h(r))

d
— [Ric(h(r))] = ~ Ric(h) — 6 Ric(h)x Ric(h)
dr

+ 3R(h)Ric(h)+(2lIRic(h)112 —R(h)2)h

Thus, [Ric(g(t))]’ = [Ric(h(r))]’ r’(t) = [Ric(h(r))]’ keDt. This meansthat

(19)holds,where~, x and arecomputedwith respectto g(t).

As we will see,the equations(20), (21) and(22) in the Propositions6 and 7

below are primarily responsiblefor the large-time agreementof diffusive in-
flation and generalrelativity, when the initial metric has positive Ricci curva-

ture. Notice that the right hand side of (20) hasa factorof (k/c)2 (of dimension
length-squared)modulo the term — l/2[R(,g)g — 3 Ric(,g)1 which vanisheson the
sphere.Similarly, the right hand sides of (21) and (22) have factors of (k/c)2

and (k/c), respectively.For dimensionalreasons,factors of (k/c)2 mustmultiply
terms which are essentially inversely proportional to an exponentiallygrowing

metric of dimension length-squared.Hencethese terms decayexponentially,as

we provepreciselyin Section3.

PROPOSITION 6. If the metric g(t) satisfies g’(t) = — 2k Ric(g(’t)) + 1/2 c2/k

g(r), then

(20) c 2g” — c 2~g~x g’ — 4 Tr~’~’]+ 2 Ric~)— ~ (c/k)2g

= — 2(k/c)2[L~~Ric(g) — 4 Ric(g) x Ric(g)

+ 2R(g) Ric(g) + (2 II Ric(g) 112 R(g)2)gJ — 4 [R~g)g — 3Ric(g)].
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Proof Let g’(t) = — 2k Ric(g(t)) + Dg(t). We setD = 1/2 c
2/k later. Then

gxg’ 1/2 Tr(g’)g’

= [— 2k Ric(g) + DgI x [-- 2k Ricfg) + Dg]

— Tr~—2kRic(g)+Dg][—2kRic(g)+DgJ

= 4k2 Ric(g) x Ric~)-‘ 4kDg x Ric~)+D2g x g

+ ~ [—4k2R~)Ric’(g) + 2kD R~g)gI+ 3[2kD Ric(g) ‘ Dig]]

= 4k2 Ric(g) x Ric(g) — 4kDgx Ric(g) + D2g

- 2k2 R~)Ric(g) + kD R~)g+ 3kDRic~)- ~ Dg.

In the following, we haveusedProp. 5 to compute[Ric(g(t))]’.

g = — 2k [Ric(g)1’+ Dg = — 2k [Ric(g)I’ + D[— 2k Ric(g)+Dg]

= -- 2k2 [ARic~)--6 Ric(g) x Ric(g) + 3R(g( Ric(g)

+ (2 Ric(g) 2 R(g)2 )g] — 2kD Rie(g) + D2g

Combining theaboveresults,we have

(20’) c 2g” — c 2[g~x g’ — — Tr~’)g’] + 2 Ric~g)— 2~

= — 2(k/c)2 [A Ric~g)— 6 Ric(g) x Ric(g) + 3R(g) Ric(g)

+ (2 Ric(g) 2 R(g)2)gj — 2D(k/c2 ) Ric~)

+ (D/c)2 g — c 2 (4k2 Ric(g) x Ric(g) — 4kDg x Ric~g)+ Dg

— 2k2 R(g)Ric~)+ kD R~)g+ 3kDRic(g) 4 D2g)

+ 2 Ric(g) — 21\g

= -‘ 2(k/c)2 [ARic(g) 4 Ric~g)x Ric(g) + 2 R(g) Ric(g)

+ (2 Ric(g) 2 ._~R(g)2 )gj — Dk/c2 R(gg
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(20’) + [2 —Dk/c2]Ric(,g) + [3/2 (D/c)2 .- 2A]g.

Upon settingD= 1/2 c2/k andA = 3/16(c/k)2,we obtain (20).

REMARK. The term in expression(20’) with the factor of (k/c)2 will be seen

(in Section 3) to dacay exponentially with time, for kD I < ~ , Recalling
the Einsteinevolution equation (2), the above proof then reveals the necessity
of setting 2A = 3/2 (D/c)2, if the evolution (2) is to be nearlysatisfied,since

otherwise [3/2 (D/c)2 — 2Alg in (20’) growsexponentially,as we will also see.
While it turns out that — Dk/c2 R(,g)g + [2 — Dk/c2] Ric(g) in (20’) at least

remains bounded, its trace is [2 — 4Dk/c2I R(g), which suggests that
D = 1/2 c2/k is the optimal choice for D, as we alreadyfound in the case of
sphericalsymmetry.

PROPOSITION7. If the metric g(t) satisfiesg’(t) = — 2k Ric(g(t)) + 1/2 c2/k g(t),

then

(21) -~- c’2[Tr~g’)2 —(~g’((2]+R~g)— 4 (c~/k2)

= (k/c)2 [R~g)2 — Ric~g)1121

and

(22) c_I Div[g’ — Tr(g’)g] = (k/c)d[R~g)].

Proof Let g’(t) = — 2k Ric(,g(t)) + D g(t). We set D = 1/2 c2/k later. For

(21), we have

~ c’2[Tr(g’)2 —llg’(121

= -4~c’2[Tr(—2kRic(g)+Dg)2 —Il _2kRic(g)+Dg~~2]

= (k/c)2 ([_R~) + ~ D/k] _~ - Ric(g)+ — D/kg~

= (k/c)2(R~)2 — 3D/k R(g) + (~D/k)

— [iiRic(g) 2 — D/k R(g) + ~ (D/k)2])
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= (k/c)
2 (R(g2 — 2D/k R(g) -~l~Ric(g) 112 + 4 (D/k12)

= (k/c)2 [R~)2 — II Ric~g) ~2] + 4 (D/c)2 2Dk/c2R(g).

(Now setD= 1c2/k)

For (22), we have, wherewe usethecontractedBianchi identity

Div Ric(g) + ~ R(~)g]=

Div[g’ — Tr(g’)g~

= Div[(— 2k Ric(g) + Dg) - Tr(—2kRic(g) + Dg)g[

= 2k Div[— Ric(g) + R~)gI = 2k Div[~Ric(g) + R~)g

+ ~ R(g)~]= 2k Div[4 R~)~]= k d[R(g)].

3. MAIN THEOREMS FOR THE INHOMOGENEOUS CASE

Recall that Theorem 1 shows that every solution of (23) below in which

(M, g
0) is a perfect S

3 of radius r
0 with r~1 = 1/4 To

2 > 1/8 (3/A) = 2(k/c)2

exponentially approachesthe de Sitter solution of Einstein’s equations with

cosmologicalconstantA = 3/16 (c/k)2 as t —* ~. Here,we considerthecasewhere
g

0 is only assumedto have positive Ricci curvature. It is not true in general

that the solution g(t) approachesa perfect de Sitter solution as t —* oo, How-

ever, the proofsbelow show that by choosingk such that 2(k/c)
2 is sufficiently

close to (but less than) Tm we canguarantee that any preassigneddegree of

roundness(spatial constancyof sectional curvature) for g(t) can be achieved

as t —* ~. Modulo this deviation from roundness,the Einstein evolution equa-

tion (2) is satisfied to within exponentiallydecayingterms. Moreover, the con-

straints (3) and (4) are satisfied modulo exponentiallydecayingterms. in spite

of any residualdeviationofg(t) from roundness.

THEOREM 2. Let (M, g
0) be a compact Riemannian3-manif?~ldwith positive

Ricci curvature tensor. For any e > 0, there is a heat diffiLsivitl’ constantk> 0,
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such that the solution g(t) of

(23) g’(t) = — 2kRic(g(t)) + -~ (c
2/k)g(t) with g(0) =g

0

exists for all t > 0, and eventuallysatisfies, to within error e, the empty-space
Einstein evolution equation (2) with cosmologicalconstantA = 3/16 (c/k)

2.

Moreover, the constraintsare satified modulo terms whichdecayexponentially
with time. Moreprecisely,for any integer n ~ 0, thereare constantsC

1 and C2

anda time T, such thatfor all t ~ T,

(24) c
2g”(t) — c2 ~~‘(t) x g’(t) — 4 Tr(g’(t))

+ 2 Ric(g(t)) — 4 (c/k)2 g(t) II

(25) ~+ c 2[Tr~’(t))2 — II g’(t) (2] + R~(t))— 4 (c~/k~<C
1 e~rik

(26) c I Div[g’(t) — Tr(g’(t)) g(t)1 I(~<C2e I/2c2 tik

The constantse and C2 can be made arbitrarily small by choosingk such
that 2(k/c)

2 is sufficientlyclose to, but less than, Tm (see Prop. 1 for the de-

finition ofT).

Proof As in Prop. 1, let h(r) (0 <r <Tm) solve h’(r) = —2 Ric(h(r)). Then
by Prop. 2,

(27) g(t) = eL2c2t/k h[2(k/c)2 [I — e - I/2c2 t/k

satisfies (7) for all t ~ 0, provided that 2(k/c)2 < Tm Let k < c v’~T~7’i,so

that this condition is strictly met. Let T(t) 2(k/c)2 [1 — e I/2c2t1k1’ and note
that r(oo) <Tm (strict). From Prop.3, we haveh(i~)= ~~(r)h(r), where

2 (~

i/i(r)~exp — R(h(a))do
3 Jo

Thus,

(28) g(t) = eV2c ilk h(r(t)) = ,t1(T(t)Y I e1”2~ilk

where
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1’~

~(r)~ J ~(a)do.

For any metric il on ill, let

(29) E[GI~ARic(G) —~4Ric(G)xRic(G)

+ 2 R(G) Ric(G) + (2 (( Ric(G) ((2 — R(G)
2)G.

From (28), we have

(30) E[g(t)] = ~(T(t)) e I/2c~ilk E[hi(~(T(t)))j.

Sincer(~) < r,,, . there is a constant K
1 . such that ~i(T(t)) < K~ < for

all t ~ 0. and we also have ~(r(oo)))< ~. Since~(r~oo))) < and~ is compact,

there is a constantK,. such that ((E[h(~(r(t)))j (~ <K2 for all t ~ 0. (Actually.

we do not need the finitenessof ~(r(oo)) for this, becauseh(fl convergesin all

of the C” norms as —~ by thedifficult Prop.4). Thus, for K3 = K1 K2. using

(30), we have

(31) E(g(t)) (( <K3 e~1/2c~ilk

For any metric G on M, let F[G] Ric(G) — 1/3 R(G)G. Note that [(XC) =

= F(G) for any constantX>0. Thus, F[g(t)] = F[h(~(r(t)))J. By (17) in Prop.

4, foranye1 > 0. thereis a constantK4, suchthat (( F(i~(fl)J( <�~ for all ~ ~ K4.

So far, the only restriction on k is that 2(k/c)
2 < r,,, . Now we also requirethat

i~(2(k/c)2)> K
4. which will be true provided that 2(k/c )2 is sufficiently close

to r,~ (i.e.. we choose k such that ~ ‘(K4) < 2(k/c)
2 < r,,, ). Let T~

(~1(K
4)). Then ((F[g(t)] (( = ((F(~(T(t)))) (~ <e~ for all t ~ T1.

Thus,by (20) and (31). for all t~ T1

c
2g” -- c 2[g~ x g’ -- ~ Tr(~’)~’]+ 2 Ric(g) 4 (c/k)2g~

— 2(k/c)2 E(g) — 4 F~)H <2(k/c)2 ((E(g) (~+

<K
3 2(k/c)

2 e 1/2c~t/k + 4 ~
Let T

2 be such that fort ~ T2, we haveK32(k/c)
2 e l/2e~t/k< 1/2 e, and

choosee
1 < 1/3 e. Finally, let T = max (T1, T2 ). Then we have (24) for all

t ~ T. The inequalities (25) and (26) are easily deducedin a similar fashion
from (21) and (22). (18) in Prop.4, and the following two equalities
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R(g(t))
2 — (( Ric(.g(t)) ((2

= ~(r(t))2e c~t/k [R(h(fl)2 — II Ric(i~(T~)) 1121 IT=~(r(t))

d[R(.g)] = ~i(r(t)) e 1/2c~ilk d[R(i~(fl)] I~-~(r(t))

Indeed,since ( dR(h(fl) ((,, -÷ 0 as ~ -+ oc, the constantC
2 in (26) canbe taken

as small asdesiredby selectingk suchthat2(k/c)
2 is sufficiently closeto (but less

than)Tm andT sufficiently large. a

As it stands,Theorem2 tells us thatundersuitableassumptions,— c2dt2 + g(t)

nearly satisfies the Einstein field equationsfor largetime. This doesnot imme-

diately imply that — c2dt2 + g(t) is close to some exactsolution of Einstein’s
equations(i.e., a nearly exact solution might not be near an exact solution).
Nevertheless,in Theorem 2, by choosinge sufficiently small and t sufficiantly
large, — c2dt2 + g(t) eventually satisfies Einstain’s equations to within any

preassignedpositive observationalerror,meaningthat thereis no obviousphysical
meansof showing that it is not an exact solution. It may be possible to show
that in generalif onehas an evolving metric g(t) that satisfiesthe evolution (2)

and the constraints (3) and (4) to within a sufficiently small error, then
— c2dt2 + g(t) is close to an actualsolution. We are unsureif this conjecture
has beenshown already,since most stability resultsinvolve perturbationsfrom

an exactsolution andassumethat the constraintsare met exactly,but the failure
of this conjecturemight tarnish the theory of generalrelativity. In the special

case at hand, we can prove that, for suitable choices,— c2 dt2 + g(t) is relati-
vely near to an exactsolution of (2), (3) and (4) for large I, namely a de Sitter
solution.More precisely,we have

THEOREM 3. With the assumptionsof Theorem2, assumealso thatM is simply-

connected. Then M is diffeomorphic to a 3-sphere. Choosean integer n ~ 0,
and let e > 0. For somemetric du2 of constantcurvature1 on M, somediffu-

sion constantk, and sometime T ~ 0, wehave in thenotation of Theorem1,

(32) II g(t) — p(t; k, p
0, ±)2da

2 (],~<ep(t; k, p ÷)2 for all t ~ T.

Proof By Prop.4, ~(?) convergesexponentiallyin C’1 to a constantcurvature

metric,say~(oc), while maintainingconstantvolume.SinceM is simply-connected,
and M admits a metric of constant curvature,M must diffeomorphic to a 3-

sphere.Thus, in the notation of Theorem1, we may write h(oo) = r
0

2da2. By
Prop.4, for any 6 > 0, we may choosesome ~, so that

Ilh(~)—r
0

2 da2 (,~<6, for all

Choosek such that ~ ~ < 2(k/c)2 <Tm Then, by (28), for ~(T(t)) ~
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(33) (g(t) — eDt~i(ry r
0

2du2 ((~

= (( e~) ‘h(~) - eDt~(Ty ‘r
0

2da2 (I

=e~)t~(ryl ((h(fl—r
0

2du2 ( <e~~6,

since i~/(T)1 < I (see Prop. 3). Let l,11

0(T) 1 — 4r1~
2r. In the notation

of Theorem 1, note that eDni~I
0(Ty ‘r0

2dc2 = r(t; k, r
0)

2du2. Our strategy

is to show that by choosingk, so that 2(k/c)2 is sufficiently closeto Ta,. /1(TY

can be made close to i].I
0(T~ for r sufficiently large. Then we show that (33)

implies thatg(t) is relativelyclosetor(t; k, r0 )
2da2,andhencetop(t; k, p ÷)2da2

by Theorem1. Recall from Prop.3 that h(r) = i~J(T) ), where

[ ~1~

=exp I— / — ~(h(a))da
L

Since we know more about h(fl than h(r), we want to express ili(r) I as a

function of ~. By insisting that h(r) = f(flhi(~)solve 11(r) = — 2 Ric(h(T)),

one finds that I,L1(T) =f(fl, where

r (T2 1

(34) f(T~) = exp I - I — R(h(~)) d~ I and T(~T) = I f(~)dã.
LI 3 j J

.10 0

By Prop. 4, h(?) -+ r
0

2du2 in C2, as ~ -÷ °° . Thus, for any c~>0,we can

find r
1, such that I R(i(l~))— 6r0

2 1< 6r
0~ct for i a ~ Consequently,

or

(35) exp [—4r0 2(1 + a) ~] <f(fl <exp [— 4r~2(1 — a) ~].

Since

11’

T(’r) f(~)d~,

Jo

we obtain upon integrating(35) from 0 to f,

+ro2(1 +a)~ [1 —exp[—4r0
2(l +a~I]
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(36) <T(fl< ~ r0~(l—a)’[l —exp[—4r0
2(l —a)fl].

From (35)and(36), we thenobtain

~ r~(l + a)- 1 [1 f(~)]<T(fl < ~ r~2(1— a) ‘[1 —f(~)I

or

If(fl —[1 _4ro2T(fl]i <4~”

0

2T(?)

or

(37) (r)~~—i~1
0(r)

1 <4aro2r<4aro2Tm,

for

- ~ <~ <T.

Choosingk so that Tm > 2(k/c)2 > max ~ I (~), T I ~ )} r
3 and using

(33) and(37),

(38) g(t) — r(t; k, r0)
2do2 iI,~= ( g(t) — e~)t i,11

0(T)
1r

0
2dcj2 ~

<~~g(t)_e~)tl,L,(TyIr
0

2du2I~

+((ei)tl/1(Ty1r
0

2d02~_eI)t~1O(T)_IrO2 do2 II~

<eDt
6 +eDtr02 i,1i~/r)~— ,,1i0(rY’ I Ii do

2 iL~

<e~)t[6 +4aT (do2 (~I,

fort> r~(r
3). Theorem1 (or(13)) and(38) thenyield

(39) g(t) — p(t; k, p0, ~)2 do
2 (,~<(( g(t) — r(t; k, r

0)
2 do2 ~

+ r(t; k, r
0)

2 do2 — p(t; k, p

0. ±)2do
2 In

<el)t[ö +4OTm (Ida2 iI~+Ce2~)t], for t>T’(T

3).

Now p(t; k, p0, ±)2 > const.~1)t, a and 6 can be madt arbitrarily small by

choosingT0 and T1 sufficienlty large,and Ce 2Dt is arbitrarily small for t suffi-
ciently large. Thus, thedesiredresult(32) follows from (39). •
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4. CONCLUDING REMARKS AND SPECULATIONS

Under certain circumstances(e.g., A — 3/8 T,,/
1smallandpositive~Theorems

2 and 3 exhibit the extent to which diffusive infaltion, with a wide variety of
inhornogeneousinitial conditions, eventually nearly satisfies the traditional

Einstein theory with positive A, and nearly becomesa homogeneousde Sitter-

like solution. Although our analysissuggeststhat the end results of relativistic

inflation and of diffusive inflation are very much in agreement,a distinction

betweenthe two theories is that diffusive inflation is expectedto producesome-

what more smoothing of inhomogeneities.since it is governedby a heatequa-

tion, as opposedto a wave equation. Somehaveconcluded(e.g., see [1. o, 11,

121) that the usual inflationary theories, based on GUT symmetry-breaking.

produce inhomogeneitieswhich are from 1000 to 100,000 times larger than

thoseobservedin the backgroundradiation. Crudely, the problemseemsto be

in dampeningthe density perturbationswhich arise in scenarioswhere a super-

cooled universe, which is classically trapped in a false vacuum state, finally

breaksits GUT (or other symmetry), via quantummechanicaltunneling to the

true vacuum state. Some maintain that there are ways to fix this, and some

say that it may not possiblewithout introducing other problems (e.g., insuffi-
cient inflation, not enough reheating for baryogenesis,etc.). We refer the in-

terestedreaderto the review articles [1, 6. Il, 12] and [13] andreferencestherein

for a survey of the efforts to constructviable theoriesof inflation. The consen-

sus seemsto be that a natural, uncontrivedsolution has yet to be found. Al-
though it is not clearly motivated by current physicaltheory, diffusive inflation
suggestsa mathematically natural device to dampen density perturbations,and

it might rescue some of the more natural inflationary modelsthat have been
scrapped.In this sense,diffusive inflation could serve as a useful device within
existing (andpossiblycompeting)versionof inflation.

Of course, much needs to done in order to connect the pure geometry of

diffusive geometry with the poorly understood (or perhaps, misunderstood)

physical mechanismswhich operatein the extremecircumstancescharacteristic

of the inflationary era (e.g., at energy densities which exceed 1060 times that

of the atomic nucleus).One might legitimately wonder if the situation is akin
to trying to describe the quantum mechanicsof the atom in terms of levers,

pulleys, and gears,or evenearth, water, fire and air. Perhapsone should explore

the possibility that during the hypothetical inflationary era or before, the uni-

verse evolved according to (1), instead of (2). (3) and (4). In other words, per-

haps during this era, geometry (and matter and gaugefields) evolved primarily

by diffusion, instead of radiation. Given the remarkable connectionswhich

have arisen betweenrelativity, quantum theory and thermodynamics,this does

not seemso outlandish.Note that thereis a very smallPlanckdiffusion constant.
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namely [Gh/c]1”2 = 1~,2/t~~the squareof Plancklength,divided by Plancktime.
The time that it would take for 50% of a point heatsource to diffuse 1 cm

is about 16,000 times the presentage of the universe.Thus, currently it is very
easy to overlook such a diffusion process. However, for a universewith dia-

meter 1, a point source could significantly diffuse throughoutthe entire uni-
verse in t,. Nevertheless,the tenacy with which may hold on to relativistic
invariance or locality is likely to preventthem from taking diffusive inflation

very seriously. This is especiallytrue for those who, in spite of actualexperi-
mental violation of Bell’s inequality, would rather deny all forms of objective
reality or contrafactualdefinitenessthan give up locality. It is possible that

external relativistic invariancemight haveemergedwith the breakingof internal

GUT symmetry? The fact that the constraints(3) and (4), which are conse-
quencesof relativistic invariance, are increasingly satisfied with time suggests

tht perhapsrelativistic invariancewasnot built in at the outset,but ratherevol-

ved. From a mathematicalperspective,not only is (1) a simpler evolutionequa-
tion to deal with than (2), but also one needsonly to specifyg(0), insteadof
g(0) and g’(O), and the constraints(3) and (4) do not haveto be dealwith. Note

thatin accordancewith the uncertaintyprinciple, position and velocity cannot
be separatelyspecified, even modulo constraints,but rather their probability

distributions are encodedin a single wave function. In diffusive inflation g’(O)
is encodedwithin g(0), namely g’(O) = — 2k Ric~g(0))+ Dg(0). This may be
a clue that perhapsdiffusive inflation is a semi-classicaleffectivemanifestation

of quantumgravity, providing a thin transitional boundarylayer betweenquan-
tum gravity andclassicalgeneralrelativity.
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